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ENSEMBLE OF DNA MOLECULES
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A statistical description of an ensemble of DNA molecules in an electrolyte solution has been developed. Ra-
dial distribution functions for all the components of the system and a single-particle distribution function for
the elements of a molecule and its orientation elastic moduli have been calculated on this basis.

Among the biological materials characterized by the liquid-crystalline order [1], ensembles of DNA molecules
are of primary importance [2, 3]. In the last sixty years, its has been established by investigating a number of impor-
tant biological objects such as chromosomes, certain viruses and bacteriophages, and spermatozoon nuclei that they
represent ordered phases formed of DNA molecules which are both in linear and annular closed forms and stay in cer-
tain solvents. These phases found both in vivo and in vitro possess a liquid-crystalline structure [1–3].

We will assume that DNA molecules whose elements carry a negative charge are in the solution of a strong
NaCl-type electrolyte. Therefore, their statistical description is complicated, among other things, by the presence of a
long-range Coulomb interaction. The solution of such a problem will be subdivided into two steps. First we consider
the problem of isotropic Coulomb interaction between all the elements of the system and thereafter use these results
in allowing for the nonisotropic interaction between the elements of a DNA molecule.

If the influence of the solvent is allowed for only by the dielectric constant ξ, the system will be three-com-
ponent even in this case and its description will require six binary distribution functions. Let there be N1 positive ions
carrying a charge e, N2 ions having a charge −e, and N3 ions having a charge pe (p is the integer) in the system. The
total number of particles is equal to N = N1 + N2 + N3, and they occupy volume V. The condition of electroneutrality
of such a system has the form

N1e − N2e + N3pe = 0 , (1)

or

n1 − n2 + n3p = 0 , (2)

where nµ = Nµ ⁄ N, µ = 1, 2, and 3. Since we have

n1 + n2 + n3 = 1 , (3)

one parameter nµ remains free.
In any method of closing a chain of equations for partial distribution functions, the binary functions are de-

termined by the expressions

gµν = exp − β Φµν
s

 + Φµν
c

 + ωµν



 , (4)
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where β = 1/(kBT) and Φs, Φc, and ω are the short-range, Coulomb, and average-force potentials respectively. It fol-
lows from the last expression that the correct behavior of the binary functions at infinity can be ensured and conse-
quently the thermodynamic quantities themselves, by which they are determined, can exist only in the case where the
sum of the Coulomb potential and the average-force potential will be short-range. We denote it by Ω = Φc + ω. For
functions of this kind, we have obtained earlier [4] the following system of nonlinear integral equations:

Ωµν (1, 2) + 
1
2

 ∑ 

λ

 ρλ ∫ d3 Φµλ
c

 (1, 3) Ωνλ (2, 3) + Ωµλ (1, 3) Φνλ
c

 (2, 3) =

= Φµν
c

 (1, 2) − ∑ 

λ

ρλ ∫ d3 hµλ (1, 3) hνλ (2, 3) . (5)

Here we have

ρλ = nλ ρ = nλN ⁄ V ; (6)

hµλ = exp − Φµλ
s

 + Ωµλ



 − 1 ; (7)

all the potentials are dimensionless (due to the multiplication of dimensional quantities by β); the sorts of particles are
denoted by the Greek letters and their coordinates are denoted by the figures.

Equations (5) contain the Coulomb potential

Φµν
c

 (r) = 
βeµeν
εr

 , (8)

leading to a divergence of integrals because of its too slow decrease at large distances (integration in (5) is over the
entire space) if the equations are used in reduced form. This problem is characteristic of systems with Coulomb inter-
action and is eliminated in different manners.

In this case, we use the fact that all the integrals in (5) are the convolutions of two functions. This enables
us to apply the Fourier transformation to both sides of (5) to obtain a system of linear algebraic equations for the
Fourier transforms of the quantities Ω on the left-hand side of the system of integral equations in question. Determin-
ing the Fourier transformation by the relation

Ω
~

 (k) = ∫ d3
 rΩ (r) exp (ik⋅r) , (9)

we obtain

Ω
~
µν + 

1
2

 ∑ 

λ

ρλ Φ
~
µλ
c

 Ω
~
νλ + Φ

~
νλ
c

 Ω~µλ

 = Φ

~
µν
c

 − B
~
µν , (10)

where the notation

B
~
µν = ∑ 

λ

ρλh
~
µλ h

~
νλ (11)

is introduced to shorten the notation and the dependence of the Fourier transforms on k is not indicated (since all the
functions in (5) are dependent only on the corresponding distances, their Fourier transforms are functions of the modu-
lus of the vector k).

612



All the quantities in (10) are symmetric about the rearrangement of the Greek subscripts; therefore, it is only
Ω
~

11, Ω
~

12, Ω
~

13, Ω
~

22, Ω
~

23, and Ω
~

33 that will be independent. Then the system of equations (10) in expanded form will
appear as

(1 + ρ1Φ
~
) Ω

~
11 − ρ2Φ

~
Ω
~

12 + ρ3pΦ
~
Ω
~

13 = Φ
~

 − B
~

11 , (12)

− 
1
2

 ρ1Φ
~
Ω
~

11 + 



1 + 

ρ1 + ρ2

2
 Φ
~


 Ω
~

12 − 
1
2

 ρ3pΦ
~
Ω
~

13 − 
1
2

 ρ2Φ
~
Ω
~

22 + 
1
2

 ρ3pΦ
~
Ω
~

23 = − Φ
~

 − B
~

12 , (13)

1
2

 ρ1pΦ
~
Ω
~

11 − 
1
2

 ρ2pΦ
~
Ω
~

12 + 



1 + 

ρ1 + ρ3p
2

2
 Φ
~

 Ω
~

13 − 
1
2

 ρ2Φ
~
Ω
~

23 + 
1
2

 ρ3pΦ
~
Ω
~

33 = pΦ
~

 − B
~

13 , (14)

− ρ1Φ
~
Ω
~

12 + (1 + ρ2Φ
~
) Ω

~
22 − ρ3pΦ

~
Ω
~

23 = Φ
~

 − B
~

22 , (15)

1
2

 ρ1pΦ
~
Ω
~

12 − 
1
2

 ρ1Φ
~
Ω
~

13 + 



1 + 

ρ2 + ρ3p
2

2
 Φ
~

 Ω
~

23 − 
1
2

 ρ3pΦ
~
Ω
~

33 = − pΦ
~

 − B
~

23 , (16)

ρ1pΦ
~
Ω
~

13 − ρ2pΦ
~
Ω
~

23 + (1 + ρ3p
2Φ

~
) Ω

~
33 = p

2Φ
~

 − B
~

33 . (17)

Here the Fourier transform of the Coulomb interaction between oppositely charged monovalent ions is denoted by Φ
~

.
Further computations are carried out for the case p = −2. The determinant of system (12)–(17) has the form

∆ = 



1 + 

1 + 3n
2

 ρΦ
~


 



1 + 

3
2

 (1 + 3n) ρΦ
~

 + 
1
2

 [1 + n (8 + 11n)] (ρΦ
~
)2 + 

1
2

 n (1 + n) (1 + 5n) (ρΦ
~
)3



 , (18)

where it is taken into account that, because of conditions (2) and (3), we have

n1 = 
1
2

 (1 + n) ,   n2 = 
1
2

 (1 − 3n) , (19)

and n3 is denoted by n.
The solution of the above system of linear equations is very cumbersome; therefore, we write it in compact

form:

Ω
~
µν = − B

~
µν + a~µν ρΦ

~
 + b

~
µν (ρΦ

~
)2 + c~µν (ρΦ

~
)3 + d

~
µν (ρΦ

~
)4

 ⁄ ∆ , (20)

where α~µν, b
~
µν, c~µν, and d

~
µν represent the linear combinations of B

~
11, B

~
12, B

~
13, B

~
22, B

~
23, and B

~
33 with coefficients

determined by the quantity n, rather than give it completely.
Next we must perform the inverse Fourier transformation

Ωµν (r) = 
1

(2π)3
 ∫ d3

kΩ
~
µν (k) exp (− ik⋅r) , (21)

whose realizability is determined by the analytical properties of the integrand, mainly by the behavior of the functions
Ω
~

(k) determined by expression (20) for k → ∞. In explicit form, the dependence of these functions on k is found in
terms of the Fourier transform of the Coulomb potential
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ρΦ
~

 (k) = 
4πβρe

2

εk
2  = 

κ2

k
2  , (22)

where k = √4πβρe2 ⁄ ε  is the Debye parameter. The substitution of (22) into (20) leads to the explicit dependence of
the Ω

~
 functions on k:

Ω
~
µν (k) = 

− B
~
µνk

8
 + a~µνκ

2
k

6
 + b

~
µνκ

4
k

4
 + c~µνκ

6
k

2
 + d

~
µνκ

8

(k2
 + aκ2) (k6

 + 3aκ2
k

4
 + bκ4

k
2
 + cκ6)

 , (23)

where

a = (1 + 3n) ⁄ 2 ;   b = [1 + n (8 + 11n)] ⁄ 2 ;   c = n (1 + n) (1 + 5n) ⁄ 2 . (24)

Formally, expression (23) appears as the ratio of the polynomials of the eighth degree in k, but the coeffi-
cients of the numerator are functions of this variable and the most leading of them — B

~
µν — may act as the Fourier

transform of the Coulomb potential (22) in the most unfavorable case; therefore, the degree of the polynomial in the
numerator is less than the degree of the denominator at least by two, which ensures a decrease in Ω~(k) at infinity.

The value of the integral (21) is determined by the zeros of the denominator of (23). The investigations car-
ried out have shown that the roots of this denominator are imaginary for all the permissible values of n. Closing the
integration contour in the upper half-plane, for the integral (21) we obtain

Ωµν (r) = 
1

4π2
ir

  ∫ 
−∞

∞

 dkkΩ
~
µν (k) exp (ikr) = 

1

2πr
  ∑ 

n=1

4

  lim
k→ikn

  kΩ
~
µν (k) exp (ikr) (k − ikn) , (25)

where kn are the moduli of the roots of the denominator of (23).
It follows from dependence (25) that all the residues of the integrand are in proportion to exp (−knr); there-

fore, the inverse transforms of the average-force potentials will contain factors exp (−knr)/r, because of which the cor-
relation functions (7) will turn out to be short-range: after the transformations carried out, the Coulomb interaction
appearing in (5) has turned out to be represented in shielded form.

The actual determination of the values of Ω(r) involves the necessity of solving a system of nonlinear equa-
tions. Such a system is expression (25), since all the coefficients of the numerator in (23) are functions of Ω and can
be found only numerically. Figure 1 gives the calculated radial functions with a solid-sphere potential as a short-range
part. When the densities are low, their behavior resembles Debye behavior, but when the density is high, they become
liquid-like, which points to the occurrence of an efficient attraction between charged objects of all types under such
conditions.

Fig. 1. Radial functions for low (ρ = 0.1) (a) and high (ρ = 0.6) (b) densities:
1) g11, 2) g12, 3) g13, 4) g22, 5) g23, and 6) g33.
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It is problematic to allow for the anisotropic short-range interaction at the level of binary functions because
of the too large number of variables determining the states of particles. The manner in which Eqs. (5) should be
treated is unclear, since all the transformations described above are inapplicable in this case. Therefore, we restrict our
consideration to single-particle functions describing the behavior of the elements of a DNA molecule in the ionic en-
vironment presented above. An equation for the single-particle function has the form [5]

ϕ (1) = − A ∫ d2 exp [− ϕ (2)] 


− Φs

 (1, 2) − Ω (1, 2)] − 1


 . (26)

Here ϕ is the average-force potential determining the single-particle distribution function

f (1) = A exp [− ϕ (1)] ; (27)

Ω is the binary average-force potential which is the solution of the system of equations considered above, and Φs is
the noncentral short-range potential of direct interaction of the elements. As the latter, we have selected the Gay–Berne
potential [6] used in liquid-crystalline models. The nonlinear integral equation (26) has been solved numerically. Figure
2 gives the dependences (calculated for different densities) of the single-particle distribution function on the angle be-
tween a certain fixed direction and the long axis of an ellipsoid of revolution modeling molecular elements. It is seen
in the figure that in the case of a low density a nearly uniform distribution is transformed toward increasing values of
this angle with growth in the density.

The single-particle distribution function found enables us to calculate the orientation elastic moduli, i.e., the
Franck moduli of a DNA molecule, considering it from the viewpoint of a nematic liquid crystal. For this purpose we
use results of the statistical theory developed earlier and computational formulas [7] for the Franck moduli.

The Franck moduli are determined by the expressions

K11 = Ls
2
 




1 − χ
2χ

 (scos
2
 ϑt − scos

4
 ϑt) + 

3
4

 (scos
2
 ϑt − 2 scos

4
 ϑt + scos

6
 ϑt)




 (scos

2
 ϑt − scos

4
 ϑt) , (28)

K22 = Ls
2
 




1 − χ
χ

 (scos
2
 ϑt − scos

4
 ϑt) + 

1
4

 (scos
2
 ϑt − 2 scos

4
 ϑt + scos

6
 ϑt)




 (scos

2
 ϑt − scos

4
 ϑt) , (29)

K33 = Ls
2
 




1 − χ
2χ

 (scos
2
 ϑt − scos

4
 ϑt) + (scos

4
 ϑt − scos

6
 ϑt)




 (scos

2
 ϑt − scos

4
 ϑt) , (30)

L = 3πMb
2ρ2σ0

3χ3
 

1 + 

3
14

 χ2


 ⁄ β (1 − χ)2 , (31)

Fig. 2. Single-particle distribution function for different densities: 1) ρ = 0.1;
2) 0.2; 3) 0.3.
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b = 4πρσ0
3
mχ2

 

1 + 

3
14

 χ2


 ⁄ 3 (1 − χ) , (32)

s = sP2t = ∫ 
Ω

dΩP2 (ϑ) f (Ω) , (33)

M = − ∫ 
0

∞

y
4
c (y) dy , (34)

m = − ∫ 
0

∞

y
2
c (y) dy , (35)

where c(y) is the direct correlation function for the system of spherical particles and σ0 and χ are the parameters of
the Gay–Berne potential [6]. The angle brackets mean averaging using the single-particle distribution function f(ϑ) ob-
tained in solving Eq. (26). Introducing the average value

K = 
1
3

 (K11 + K22 + K33) , (36)

we can determine the dimensionless elastic moduli

k11 = 
K11

K
 ,   k22 = 

K22

K
 ,   k33 = 

K33

K
 . (37)

Expressions (34) and (35) involve the direct correlation function which can be found using the Ornstein–
Zernicke equations if we know the total correlation functions (7). For a multicomponent system, it becomes the system
of equations

hµν (r) = cµν (r) + ∑ 

λ

ρλ ∫ d3
tcµλ (t) hνλ (r − t) . (38)

Since the integrals are convolutions here, we use a technique based on the Fourier transformation. We obtain the fol-
lowing system of linear equations for the Fourier transforms:

h
~
µν = c~µν + ∑ 

λ

ρλc~µλh
~
µλ , (39)

or, in detailed representation,

h
~

11 = c~11 (1 + ρ1h
~

11) + ρ2c~12h
~

12 + ρ3c~13h
~

13 , (40)

h
~

12 = c~11ρ1h
~

12 + c~12 (1 + ρ2h
~

22) + ρ3c~13h
~

13 , (41)

h
~

13 = c~11ρ1h
~

13 + ρ2c~12h
~

23 + c~13 (1 + ρ3h
~

33) , (42)

h
~

22 = c~12ρ1h
~

12 + c~22 (1 + ρ2h
~

22) + ρ3c~23h
~

23 , (43)
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h
~

23 = c~12ρ1h
~

13 + ρ2c~22h
~

23 + c~23 (1 + ρ3h
~

33) , (44)

h
~

33 = c~13ρ1h
~

13 + ρ2c~23h
~

23 + c~33 (1 + ρ3h
~

33) . (45)

In this case c~33, i.e., the Fourier transform of the direct correlation function of the elements of a DNA molecule, is of
interest:

c~33 = 
1
∆

 



(1 + ρ2h

~
22) [2ρ1ρ2h

~
12h

~
13h

~
23 − ρ2h

~
23
2

 (1 + ρ1h
~

11) − ρ1h
~

13
2

 (1 + ρ2h
~

22) +

+ h
~

33 (1 + ρ1h
~

11 + ρ2 (h~22 − ρ1 (h~12
2

 − h
~

11h
~

22)))] +

+ ρ2
2
h
~

33 (h~33 − ρ2 (h~23
2

 − h
~

22h
~

33)) [h
~

33 (1 + ρ1h
~

11 + ρ2 (h~22 − ρ1 (h~22
2

 − h
~

11h
~

22))) +

+ h
~

13 ρ2h
~

23 (ρ1 (h~12 − h
~

11) − 1) + ρ1h
~

13 (ρ2 (h~12 − h
~

22) − 1)] +

+ ρ3 [2h
~

33
2

 (1 + ρ2h
~

22) (1 + ρ1h
~

11 + ρ2 (h~22 − ρ1 (h~12
2

 − h
~

11h
~

22))) +

+ ρ2h
~

13h
~

23 (ρ2h
~

23
2

 (1 +  ρ1 (h
~

11 − 2h
~

12)) + 2ρ1h
~

13h
~

23 (1 − ρ2h
~

22) − ρ1h
~

13
2

 (1 + ρ2h
~

22)) +

+ h
~

33 ρ1h
~

13
2

 (ρ2 (h~12 − h
~

22) − 2) (1 + ρ2h
~

22) − ρ2h
~

13h
~

23 (1 + ρ1 (h~11 − 3h
~

12)) (1 + ρ2h
~

22) −

− ρ2h
~

23
2

 (2 (1 + ρ1h
~

11 + ρ2h
~

22 + ρ1ρ2h
~

11h
~

22) − ρ1ρ2h
~

12
2 )]




 , (46)

where

∆ = (1 + nρh
~

33) [1 + ρ2h
~

22 + nρ (h~33 − ρ2 (h~23
2

 − h
~

22h
~

33))] ×

× 



1 + ρ2 (h

~
22 − ρ1h

~
12
2 ) + nρ (h~33 + ρ1ρ2h

~
13 (h~12 (h~13 + h

~
23) −

− h
~

13h
~

22) + ρ2h
~

33 (h~22 − ρ1h
~

12
2 ) − h

~
13 (ρ1h

~
13 + ρ2h

~
23)) +

+ ρ1h
~

11 (1 + ρ2h
~

22 + nρ (h~33 − ρ2 (h~13h
~

23 − h
~

22h
~

33)))



 . (47)

Fig. 3. Orientation elastic moduli (a) [1) K11, 2) K22, and 3) K33] and their di-
mensionless values (b) [1) k11, 2) k22, and 3) k33].
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Applying the inverse Fourier transformation to (46) with account for (47), we obtain the direct correlation
function in direct space, using which we find the values of (34) and (35) and determine the orientation elastic moduli
from formulas (28)–(33), (36), and (37). The calculated dependences on density at room temperature are presented in
Fig. 3 (K and ρ are in the units of σ0 = 3.5 A°  and n = 0.3). It is seen that the rate of change in the Franck moduli
becomes somewhat slower with growth in the density. All the results presented in the figures have been obtained for
the first time.

NOTATION

A, normalization constant; a, b, and c, coefficients of the determinant of the system of linear algebraic equa-
tions; cµν, direct correlation function for particles of the µ and ν sort; B

~
µν, quadratic forms of the Fourier transforms

of total correlation functions; a~µν, b
~
µν, c~µν, and d

~
µν, linear combinations of B

~
µν; e, ionic charge, C; f, single-particle

distribution function; gµν, radial distribution function of the µ and ν sort; hµν, total correlation function of the µ and
ν sort; i, imaginary unit; k, wave vector; k, wave-vector modulus; kB, Boltzmann constant; K11, K22, and K33, Franck
moduli, pN; k11, k22, and k33, dimensionless Franck moduli; m and M, second and fourth moduli of the direct corre-
lation function; Nµ, number of particles of the µ sort; nµ, concentration of particles of the µ sort; N, number of par-
ticles; p, charge multiplicity; P2, second Legendre polynomial; r, distance between particles, m; s, order parameter; T,
absolute temperature, K; V, volume, m3; y1, y2, and y3, roots of the cubic equation; y1, y2, and y3, moduli of
the roots of the cubic equation; β, inverse energy, 1/J; ∆, determinant of the system of linear equations; ε, dielectric
constant; ϑ, angle, rad; κ, Debye parameter, m−1; ϕ, single-particle average-force potential, J; ω, binary average-force
potential, J; Ω,  dimensionless average-force potential; ρ, average density of the medium, m−3; ρµ, density of a com-
ponent of the µ sort, m−3; Φs, short-range interaction potential, J; Φc, Coulomb-interaction potential, J; Ω

~
, Fourier

transform; σ0, cross diameter of a molecule, m; χ, parameter of the Gay–Berne potential.
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